
Introduction
Though COVID-19 vaccine has proven its efficiency, many still remain hesitant due to potential
side effects. Side effects include the majority reporting mild to moderate symptoms, such as fever
and fatigue, but these symptoms generally would not cause long-term conditions, though rare
cases of severe symptoms or potential death are possible. We will use machine learning to build a
model that helps people in the general public make a decision on as well as healthcare providers
to recommend whether or not someone should take the vaccine and how severe their case might
be (chance of death) if they suffer an adverse reaction of whether to take the vaccine or not by
predicting a person's chance of death from taking the vaccine given indicating factors, such as age
and gender.

Problem Definition
There are a couple of reasons why we want to tackle the challenge of vaccine hesitancy through
this project. The first is that a large enough portion of the population is hesitant to get the vaccine
because herd immunity is far from achievable at the current level. Specifically, only about 83% of
Americans have received at least one dose while only 71% is fully vaccinated. According to the
Mayo Clinic, “94% of the population must be immune to interrupt the chain of transmission” of
COVID-19, a highly optimistic goal at this rate. The second reason why we chose this issue is due
to new developments in COVID-19 and the fight against it. This includes the fact that the FDA has
authorized the vaccine even for children under the age of 5, a fourth dose expected to be available
to all Americans very soon, and COVID cases recently rising due to the raging BA 5 variant. These
developments give lots of opportunities for misinformation to expand beyond what has already
been spread.
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Data
We have decided to use the Vaccine Adverse Event Reporting System (VAERS) dataset compiled by
the Department of Health and Human Services. It consists of over 34,000 reported incidents of
adverse reactions to various vaccines, among them the COVID-19 vaccine.

A major problem with this dataset, however, is that its formatting is inconsistent as data is
frequently missing from some cells or structure of data across rows and columns varies from cell
to cell. For example, symptom and allergy reporting does not have a consistent delimiter, and
these may be important features in predicting someone's risk of death or other adverse effects
from taking the COVID vaccine. Also, our target variable, whether or not someone died, has a lot
of missing rows (empty, marked N/A, or equivalent), so this limits the amount of data that we can
work with as well as the balance of our data. This is likely due to the fact the dataset is a
compilation of adverse event reporting from people across the United States and consistency
would be very hard to enforce among such a large population.

To better feed the data into our model, we dropped unnecessary columns and rows which had
missing data in their feature columns. The features that we ended up using were a person's age
(“AGE_YRS”), the number of pre-existing conditions the have (“HISTORY”), the number of allergies
(“ALLERGIES”), and the number of symptoms they experienced after the vaccination
(“SYMP_COUNT”). We thought that the number of pre-existing conditions and allergies would
have quite a correlation since someone's allergies would comprise a part of their pre-existing
conditions. However, this is largely not the case as given by our correlation matrix below. Thus, we
decided to keep both features. For the “DIED” column, we had 6% of the data being positives (“Y”,
which means the person died), so our data had to be balanced out. For this, we assigned the rest
of the rows as negatives (possible since people rarely die of the vaccine) and randomly sampled an
equivalent number of these negative rows, which helped to balance out the data we fed into our
models. By the end of our cleaning process, we fed in 3,466 samples (1,733 positives and
negatives) to our models with a train-test split of 0.8 for training and 0.2 for testing. Despite its



shortcomings, this dataset is quite a detailed compilation which we worked with fairly successfully
to predict a person's chance of dying from the COVID vaccine.

Below is a preview of our data:

Here is the 5-number summary of our cleaned data ("DIED" = 0 means non-death while 1 means
death):

Feature Minimum Mean Median Maximum Std. Dev.

Age (years) 1 63.7 65 106 20.5

History 1 3.2 1 54 3.9

Allergies 1 1.6 1 26 1.6

Symptoms 1 3.5 4 5 1.6

From the above table, we can see that age has a large standard deviation relative to the other
features. However, standardizing this feature led to worse results in our models, so we left it as is.
Below, we have included the correlation matrix between our features:

correlation
As you can see, the features are largely independent of one another. The pairing of age and
history as well as history and allergies had a moderately positive correlation but this is not strong
enough to have an effect on the model prediction if we fed both of them in. As a result, we did not
conduct any further dimensionality reduction on the dataset.

Below is a visual preview of our dataset. Here, we have plotted a person's age next to the number
of allergies that they have. Below it are the same plots for only the positive (died) and negative
(did not die) samples respectively.



  
As you can see, there is a fair amount of overlap between these two features in terms of the
positive and negative cases. However, the positive data is more right-heavy while the negative
data is more evenly distributed but situated to the left of the positive data. As such, there seems to
be a possible decision boundary that could separate the two classes, albeit with quite a bit of
error. It can also be observed that as the features increase in value, the chance of death also
increases. For example, according to the graph, a person who is around 100 years old has a very
high chance of death from an adverse reaction to the vaccine since their immune system may not
be able to fight off the adverse reaction as effectively as someone who is around 40 years old.
These behaviors are relatively consistent across all feature pairs.

Methods
We used sklearn as our Python library to build, train, and test our models. Furthermore, we used
pandas to read and write our data from the .csv files and matplotlib and plotly to visualize our
data.

Our initial attempts at a model for our data, which we implemented in the midterm report,
considered a combination of discrete and continuous variables that did not yield much cluster
separation. These features include the number of days someone spent in the hospital and how
many doses of the vaccine they had. Although these were considered to be possibly helpful, we
ended up dropping them to find better and more easily ascertainable features, such as the
number of allergies and symptoms one has.

For our midterm report, we used various models to try and classify our data, including K-means,
Random Forest, and MLP. However, since our data did not allow for a good classification
boundary, these algorithms fared around 50-55% accuracy. As such, we tried ways of manipulating
our data so as to make our data more friendly to our models.

The methods we used included taking the limited number of death samples in our dataset and
using the mean and covariance of that population's features to generate more data just like it.



However, when we merged this generated data with our current data and assumed the points
without death data to be negative samples, our overall data ended up having all positive samples
since our negative samples were dropped due to other empty features. Based on the above
approach, we tried to use the mean and covariance to classify existing samples within our original
dataset as being deaths based on the probability outputted by a multinormal pdf. However, these
results yielded only positive cases and we were thus not able to use the resulting data in our
models.

After these methods failed, we decided that the main problem lay in the features that we selected.
Hence, we scoured the vaccination and symptoms datasets to try to identify features that we could
work with. The result was age, history, allergies, and symptoms. We plotted these features and
found that an at least somewhat discernible decision boundary existed between the two clusters
for each feature. As such, we inputted these models into SVM, Decision Tree, and Logistic
Regression models and manipulated the hyperparameters of each to yield more accurate results.
Here is a more in-depth look into each algorithm:

SVM:
We used sklearn's SVM classifier, SVC, to classify our data into deaths and non-deaths. Although
our data was not linearly separable and had some overlap, we felt that SVM could possibly yield
better accuracy as it would project our data to a different dimension than what we had, which may
make the data more linearly separable. We thought that this would show an improvement as
opposed to Logistic Regression. Our SVM model used a linear kernel since the other options, such
as polynomial SVM, yielded consistently worse accuracy, specifically 2% worse than the linear
model. We also left the C value to the default of 1 since changing it had a negligible effect on its
performance, but instead increased SVM's runtime as we increased C. The C value is directly
proportional to how wide we want our decision boundary's margin to be when classifying points,
so since we had quite a bit of overlap between classes, a margin would not be of much use to our
model, which may explain the negligible effect on accuracy.

Decision Tree:



Our data was not linearly separable, and so the Decision Tree algorithm may not look like the best
method. However, we felt that given the nature of our data, that there are often constraints
beyond which someone's condition becomes serious. For example, if a person is over 90, their risk
of death from the vaccine would increase substantially, especially since they may also have a long
history of conditions and much more severe and numerous symptoms. Thus, we felt that a
Decision Tree classifier would fare well. We set the DT to use entropy, or the uncertainty of the
resulting outcomes, to judge the quality of a split. For example, if during training, a split yields
positives of 90% and negatives of 10%, then our split may be overfitting as it yields a
disproportionate number of positives compared to negatives, meaning our entropy is relatively
low. Thus, we would try to use majority voting for that split and make it decide that all inputs are
outputted as positive. Also, we limited the maximum depth of our tree (how many layers of nodes
it has) to 8 as that yielded the optimal performance measures (neither underfit nor overfit).

Logistic Regression:
To check if SVM was an improvement on normal linear classification, we used Logistic Regression
to try and classify our data. We faced the same challenges as in SVM and set the solver to LBFGS,
which uses the second derivative of the objective function (second gradient) to reach an optimum.
This configuration yielded the best results, but they were very similar to that of SVM. Hence, SVM
did not significantly improve on normal classification methods.

Results and Discussion
SVM:
Here are the results for SVM:

Mean training accuracy: 80.7%
Mean validation accuracy: 80.4%
Confusion matrix:



TN: 256 FP: 72

FN: 64 TP: 302

Precision: TP/(TP+FP) = 0.807
Recall: TP/(TP+FN) = 0.825
ROC-AUC score: 0.803

  
Decision boundary: y = 0.399x + -24.530

As we can see from the above metrics and the graphs, SVM performed fairly well. However, there
is quite a bit of overlap between the two classes with respect to the decision boundary. To delve
deeper, we look at the precision and recall, which measure the quality and completeness of a
decision boundary respectively. These can be derived from the confusion matrix and show that the
model is still quite accurate. Furthermore, we can consider the ROC-AUC curve, which tells us how
much our model can actually separate our data. This measure is also very high (1 means no
overlap between classes), meaning that our model is overall very solid. Below, we have included
our SVM ROC-AUC curve:

Decision Tree:
Here are the results for DT:

Hyperparameters:
Objective = Entropy
Max. Depth = 8

Mean training accuracy: 84.4%
Mean validation accuracy: 83.3%
Confusion matrix:

TN: 268 FP: 62



FN: 54 TP: 310

Precision: TP/(TP+FP) = 0.833
Recall: TP/(TP+FN) = 0.852
ROC-AUC score: 0.832

Above is an example of the first layer of our DT decision path. As you can see, the model checks
whether the age is less than or equal to 65. It then checks if the input's history is less than or equal
to 6.5 or if the age is less than or equal to 78.5. Depending on the entropy of those decisions, the
model decides how to split the data and passes the input further down the respective subtree until
it comes to a decision node. Furthermore, when we tested how changing the depth
hyperparameter affected our results, we settled on 8 layers as this did not overfit and achieved the
maximum accuracy without doing so. Increasing the number of layers made the validation
accuracy consistently decrease to around 79-80%. Also, setting our criterion to entropy (total
uncertainty of a split) instead of the default gini (subtracting the sum of the square of the
probabilities of one side of the split from another) increased our accuracy from around 81% to
83.3%. We used the first layer above to demonstrate how our actual DT model worked as the text
is indecipherable as the layers increase. There are a total of eight layers in our DT (the optimal
value) as shown below in our full DT model.

Also, here is the ROC-AUC for our DT model:

Overall, the results of DT are quite a bit better than those of SVM.

Logistic Regression:
Here are the results for LR:

Hyperparameters:
Solver = LBFGS



Mean testing accuracy: 80.1%
Mean validation accuracy: 80.1%
Confusion matrix:

TN: 257 FP: 71

FN: 65 TP: 301

Precision: TP/(TP+FP) = 0.809
Recall: TP/(TP+FN) = 0.822
ROC-AUC score: 0.803

  
As you can see from the above statistics and decision boundary, LR bears an almost identical
resemblance to SVM. In fact, its performance is very slightly better but by a negligible margin. We
made some hyperparameter changes to LR as well. For example, we changed the solver
hyperparameter from LBFGS to Newton-CG and SAG, with the former outputting similar results to
LBFGS and SAG outputting worse results. As such, we decided that LBFGS was the optimal solver.
Let's also take a look at the ROC-AUC curve for LR:

LR's ROC-AUC curve is very similar to that of both SVM and DT, but moreso to that of SVM. From
this, we can see that no matter the hyperparameter setting of SVM, it cannot outperform LR by a
significant-enough margin. Given SVM's increased runtime compared to LR, LR seems to be a
better method to use than SVM.

Conclusions
Overall, our methods of data collection and cleaning, namely minimizing the number of features
and using features with minimal correlation amongst each other, as well as our model selection
and parameter tuning, were effective in predicting if a person has a chance of dying from the



COVID vaccine, given that they had an adverse reaction. Of all the models, our Decision Tree
model was the best-performing as it consistently had an accuracy about 2% higher than the other
models. In addition, all of our models followed our expected trends that higher feature values
correlate to higher chances of death. For instance, the SVM and LR boundaries show that a person
who is older than 80 years old has a significantly higher chance of death from an adverse reaction
to the vaccine than someone who is even 60 years old. This trend further reinforces our confidence
in our models' outputs.

Some limiting factors to our models' performances include no clear separation between classes
and vague and inconsistent definitions throughout the data. For example, there was a largely
consistent but still somewhat inconsistent comma delimiter used throughout the medical history
reporting. Thus, the number of pre-existing conditions that somebody suffered from may have
been fed incorrectly into the model. Also, the HHS says that an adverse reaction to a vaccine
should be reported even if it is not clear that the vaccine was the cause of that adverse reaction.
Thus, the data may not, in fact, be completely about people who suffered an adverse reaction
largely due to the vaccine.

However, given the results that we generated, we are confident that our models are a step in the
right direction towards better understanding adverse reactions to vaccine and allowing healthcare
providers and the general public to better understand if a person should take the vaccine and if
they experience an adverse reaction, what their risk of death or other serious consequences are.
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